Welcome to another edition of my weekly reading notes! This week's collection brings together some fascinating developments across the tech landscape. From the intricacies of building cross-platform .NET tools to impressive AI breakthroughs like Warp's stellar performance on SWE-bench, there's plenty to explore. I've also discovered some thought-provoking content about leadership, product management, and the art of meaningful communication. Whether you're interested in the latest AI tools, looking for career insights, or simply want to stay current with industry trends, this week's selection has something valuable for every developer and tech professional.
Programming
Using and authoring .NET tools (Andrew Lock) - Interesting post that shares the behind-the-scenes when you're building a tool for multiple targets and the challenge that it represents. Those also share the new ways of .NET 10
Design at GitHub with Diana Mounter (.NET Rocks!) - Very interesting, discussion about so many things: career, the balance between design and engineering, GitHub, and so much more.
How to Lead with Value with Dr. Morgan Depenbusch (How to Lead with Value with Dr. Morgan Depenbusch) - I really enjoyed this episode about the little things we can do to shift the way we interact with others.
Sharing my Reading Notes is a habit I started a long time ago, where I share a list of all the articles, blog posts, and books that catch my interest during the week.
I wanted to kick the tires on the upcoming .NET 10 C# script experience and see how far I could get calling Reka’s Research LLM from a single file, no project scaffolding, no .csproj. This isn’t a benchmark; it’s a practical tour to compare ergonomics, setup, and the little gotchas you hit along the way. I’ll share what worked, what didn’t, and a few notes you might find useful if you try the same.
All the sample code (and a bit more) is here: reka-ai/api-examples-dotnet · csharp10-script. The scripts run a small “top 3 restaurants” prompt so you can validate everything quickly.
We’ll make the same request in three ways:
OpenAI SDK
Microsoft.Extensions.AI for OpenAI
Raw HttpClient
What you need
The C# "script" feature used below ships with the upcoming .NET 10 and is currently available in preview. If you prefer not to install a preview SDK, you can run everything inside the provided Dev Container or on GitHub Codespaces. I include a .devcontainer folder with everything set up in the repo.
Set up your API key
We are talking about APIs here, so of course, you need an API key. The good news is that it's free to sign up with Reka and get one! It's a 2-click process, more details in the repo. The API key is then stored in a .env file, and each script loads environment variables using DotNetEnv.Env.Load(), so your key is picked up automatically. I went this way instead of using dotnet user-secrets because I thought it would be the way it would be done in a CI/CD pipeline or a quick script.
Run the demos
From the csharp10-script folder, run any of these scripts. Each line is an alternative
dotnet run 1-try-reka-openai.cs
dotnet run 2-try-reka-ms-ext.cs
dotnet run 3-try-reka-http.cs
You should see a short list of restaurant suggestions.
OpenAI SDK with a custom endpoint
Reka's API is using the OpenAI format; therefore, I thought of using the NuGet package OpenAI. To reference a package in a script, you use the #:package [package name]@[package version] directive at the top of the file. Here is an example:
#:package OpenAI@2.3.0
// ...
var baseUrl = "http://api.reka.ai/v1";
var openAiClient = new OpenAIClient(new ApiKeyCredential(REKA_API_KEY), new OpenAIClientOptions
{
Endpoint = new Uri(baseUrl)
});
var client = openAiClient.GetChatClient("reka-flash-research");
string prompt = "Give me 3 nice, not crazy expensive, restaurants for a romantic dinner in Montreal";
var completion = await client.CompleteChatAsync(
new List<ChatMessage>
{
new UserChatMessage(prompt)
}
);
var generatedText = completion.Value.Content[0].Text;
Console.WriteLine($" Result: \n{generatedText}");
The rest of the code is more straightforward. You create a chat client, specify the Reka API URL, select the model, and then you send a prompt. And it works just as expected. However, not everything was perfect, but before I share more about that part, let's talk about Microsoft.Extensions.AI.
Microsoft Extensions AI for OpenAI
Another common way to use LLM in .NET is to use one ot the Microsoft.Extensions.AI NuGet package. In our case Microsoft.Extensions.AI.OpenAI was used.
#:package Microsoft.Extensions.AI.OpenAI@9.8.0-preview.1.25412.6
// ....
var baseUrl = "http://api.reka.ai/v1";
IChatClient client = new ChatClient("reka-flash-research", new ApiKeyCredential(REKA_API_KEY), new OpenAIClientOptions
{
Endpoint = new Uri(baseUrl)
}).AsIChatClient();
string prompt = "Give me 3 nice, not crazy expensive, restaurants for a romantic dinner in Montreal";
Console.WriteLine(await client.GetResponseAsync(prompt));
As you can see, the code is very similar. Create a chat client, set the URL, the model, and add your prompt, and it works just as well.
That's two ways to use Reka API with different SDKs, but maybe you would prefer to go "SDKless", let's see how to do that.
Raw HttpClient calling the REST API
Without any SDK to help, there is a bit more line of code to write, but it's still pretty straightforward. Let's see the code:
using var httpClient = new HttpClient();
var baseUrl = "http://api.reka.ai/v1/chat/completions";
var requestPayload = new
{
model = "reka-flash-research",
messages = new[]
{
new
{
role = "user",
content = "Give me 3 nice, not crazy expensive, restaurants for a romantic dinner in New York city"
}
}
};
using var request = new HttpRequestMessage(HttpMethod.Post, baseUrl);
request.Headers.Add("Authorization", $"Bearer {REKA_API_KEY}");
request.Content = new StringContent(jsonPayload, Encoding.UTF8, "application/json");
var response = await httpClient.SendAsync(request);
var responseContent = await response.Content.ReadAsStringAsync();
var jsonDocument = JsonDocument.Parse(responseContent);
var contentString = jsonDocument.RootElement
.GetProperty("choices")[0]
.GetProperty("message")
.GetProperty("content")
.GetString();
Console.WriteLine(contentString);
So you create an HttpClient, prepare a request with the right headers and payload, send it, get the response, and parse the JSON to extract the text. In this case, you have to know the JSON structure of the response, but it follows the OpenAI format.
What did I learn from this experiment?
I used VS Code while trying the script functionality. One thing that surprised me was that I didn't get any IntelliSense or autocompletion. I try to disable the DevKit extension and change the setting for OmniSharp, but no luck. My guess is that because it's in preview, and it will work just fine in November 2025 when .NET 10 will be released.
In this light environment, I encountered some issues where, for some reason, I couldn't use an https endpoint, so I had to use http. In the raw httpClient script, I had some errors with the Reflection that wasn't available. It could be related to the preview or something else, I didn't investigate further.
For the most part, everything worked as expected. You can use C# code to quickly execute some tasks without any project scaffolding. It's a great way to try out the Reka API and see how it works.
What's Next?
While writing those scripts, I encountered multiple issues that aren't related to .NET but more about the SDKs when trying to do more advanced functionalities like optimization of the query and formatting the response output. Since it goes beyond the scope of this post, I will share my findings in a follow-up post. Stay tuned!
Here are my reading notes for the week: a mix of AI research and evaluation, .NET and Linux troubleshooting, testing framework changes, and JavaScript/TypeScript perspectives, plus a few podcast episodes on C#, work design, and software modernization that I found worthwhile.
AI
Introducing Research-Eval: A Benchmark for Search-Augmented LLMs (Reka Team) - One thing that has fascinated me since the beginning of this AI trend is how they test and measure the efficiency of those models. This post is going to go into details and share the benchmark (oss) and the results very interesting
Converting an xUnit test project to TUnit (Andrew Lock) - Like Andrew said in this post, changing your test framework is a big deal, but I will definitely consider TUnit for my next project. A very interesting post.
C# 14 with Dustin Campbell (.NET Rocks!) - Nice episode talking about C# and more precisely things that are related to Razor Pages. Always nice to listen to Carl and Richard.
How work design can reignite tremendous results (Modern Mentor) - Two Modern Mentor episodes this week, I love those shorter, concentrated episodes. This one focuses on ideas to help leaders redesign how work gets done.
Sharing my Reading Notes is a habit I started a long time ago, where I share a list of all the articles, blog posts, and books that catch my interest during the week.